
www.latticesemi.com 1 rd1194_01.0

November 2013 Reference Design RD1194

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
Management Data Input/Output Interfaces, or MDIO, are specified in the IEEE 802.3 standard and intended to pro-
vide a serial interface to transfer management data between an Ethernet Media Access Controller (MAC) layer and
a physical (PHY) layer. The device that controls the MDIO bus is called a Station Management Entity (STA), while
the device being managed is called the MDIO Manageable Device (MMD). The STA device is often embedded in
the MAC layer and acts as a master for MDIO interface. The MMD is often embedded in the PHY device and is a
slave device on MDIO interface. The MDIO interface consists of two pins, a bidirectional MDIO pin and a Manage-
ment Data Clock (MDC) pin. All data is transferred synchronously to the MDC which is usually provided by the STA
or a master controller and sourced to all slave devices. The MDIO is a relatively slow interface running up to 2.5
MHz. However, its ability to access and modify various registers in PHY devices by the master often extends the
application beyond the Ethernet system. Figure 1 shows a generic application environment for MDIO interface
between MAC layer and PHY layer devices.

IEEE 802.3 Standard specifies two different MDIO interface protocols under Clause 22 and Clause 45. This design
provides following MDIO interface compliant cores.

• MDIO master controller which can be used for both clause 22 and clause 45 protocols.

• MDIO slave controller for clause 22 protocol.

• MDIO slave controller for clause 45 protocol.

Figure 1. Generic Application Environment of the MDIO Interface

PCS

PMD

MAC

MDIO
Slave

MDIO
Slave

MDIO
Master

PCS

PMD

MDIO
Slave

MDIO
Slave

MAC
STA

MAC Layer
PHY Layer Other

Ports

Other
Ports

MDIO Master and Slave Controllers

2

MDIO Master and Slave Controllers

Features
MDIO Master

• Implements the IEEE 802.3 Standard, Clause 22 and Clause 45 interface

• Simple Wishbone interface for user through register indirect access

• Dynamic selection between clause 22 and clause 45 protocols

• Dynamic selection for Preamble pattern generation in MDIO frames

• Parameterized clock divider for MDC clock

MDIO Slave

• Implements the IEEE 802.3 Standard, Clause 22 and Clause 45 interface

• Simple Wishbone interface for user to implement PHY registers

• PHY address setting through input port for clause 22

• PHY address and Device type settings through input port for clause 45

• Preamble pattern selection through input port for clause 22

Functional Description
MDIO as originally defined in Clause 22 of IEEE 802.3 specification is able to access up to 32 registers in 32 differ-
ent PHY devices. The STA initiates all the commands using MDIO frame and provides PHY device address and
register address to perform register read or write operation. It also sources clock on pin MDC. MDC is specified to
have the frequency up to 2.5Mhz. Figure 2 shows the structure of the MDIO frame used for these operations. The
frame format allows only 5bits of PHY address and 5bits of Register address which limits to 32 PHY devices and 32
registers in each device.

Figure 2. Clause 22 Frame Format

Field Width Description

Preamble 32 bits 32 bits of “1”s to initialize the transaction.

ST 2 bits Start of frame (01 for Clause 22)

OP 2 bits Op code.
01 – Write operation
10 – Read operation

Phy Address 5 bits PHY (port) address.

Reg Address 5 bits Register address

TA 2 bits Turnaround time for Slave to start driving read data if read operation.

Read-Write data 16 bits Data driven by master in write operation and driven by slave in read
operation.

Preamble ST OP Phy Address Reg Address TA Read-Write Data

3

MDIO Master and Slave Controllers

To address the limitations of Clause 22, the Clause 45 was added to 802.3 specification which extends the existing
frame format to give provision to access 32 PHY devices, 32 different device types and up to 64K registers in each
of these PHY devices. In Clause 45, Opcode is extended to 4 types. Figure 3 shows the Clause 45 structure of the
MDIO frame used of these operations.

Figure 3. Clause 45 Frame Format

MDIO Master
MDIO master core is provided as a Verilog source code in “source/mdio_mster.v”. Figure 4 shows a functional
block diagram of the MDIO master core. The user interface is provided as a simple Wishbone compliant interface.
Table 1 provides the details of these I/Os.

Figure 4. MDIO Master Functional Diagram

Field Width Description

Preamble 32 bits 32 bits of “1”s to initialize the transaction.

ST 2 bits Start of frame (00 for Clause 45)

OP 2 bits Op code.

00 – Address frame

01 – Write frame

10 – Read frame

11 – Read+ address increment frame

Phy Address 5 bits PHY (port) address.

Device Type 5 bits Register address

TA 2 bits Turnaround time for Slave to start driving read data if read operation.

Reg address/ Read-Write
data 16 bits Data driven by master for “Address”, “Write” frames and driven by slave

for “Read”, “Read+address increment” frames.

Preamble ST OP Phy Address Dev Type TA Reg Address / Read -Write Data

Wishbone
Interface

CFG_REG0

ADR_REG1

RAW_REG2

Clock divider

Input shift register

Control logic

Output shift
register MDIO

adr_i[1:0]

rdat_o

rstn_i

stb_i

ack_o

we_i

dat_i[15:0]

clk_i

CLKDIV MDC

4

MDIO Master and Slave Controllers

Table 1. MDIO Master Signal Description

The master core generates the clock MDC using input clock “clk_i” from the Wishbone interface. The parameter
“CLKDIV” can be used to define the frequency relationship between input “clk_i” and output “MDC”. The MDC clock
frequency is the frequency of “clk_i” divided by the “CLKDIV” parameter value. For an example of 100MHz of “clk_i”
clock, CLKDIV parameter setting of “40” gives MDC clock of 2.5MHz. The minimum possible value of on CLKDIV
parameter is 4.

The master core implements indirect addressing mechanism to access PHY registers across MDIO interface. It
implements three 16bit wide registers which can be read and written from the Wish bone interface.

The field details of these 3 register are shown in Figure 5. The register “CFG_REG0” at address 2’b00 and register
“ADR_REG1” at address 2’b01 of the wishbone address space when MDIO master is selected, can be written with
different fields which are used for building the MDIO frames. There are no MDIO frames generated when these reg-
isters are accessed. The MDIO frame is generated on serial “MDIO” pin only when the register “RAW_REG2” is
accessed.

The MDIO master core can be used generate both Clause 22 and Clause 45 frame formats. Setting the register bit
CFG_REG[15] to 1’b1 makes the core as Clause 22 master and setting to 1’b0 makes the core as Clause 45 mas-
ter.

Figure 5. MDIO Master Registers for Wishbone Access

Signal / Parameter Type Description

CLKDIV Input Parameter for MDC clock frequency

Wishbone Interface

clk_i Input Wishbone interface clock

rstn_i Input Asynchronous reset

adr_i[1:0] Input Address bus to the core

tga_i Input Used only for Clause 45. Address tag. 1’b1 along with “adr_i” gen-
erates additional address frame on MDIO interface

dat_i[15:0] Input Data towards the core

we_i Input Write enable input

stb_i Input Strobe signal/core select input

rdat_o[15:0] Output Data from the core

ack_o Output Bus cycle acknowledge

MDIO Interface

MDC Output MDIO interface clock

MDIO Bidi Bidirectional MDIO interface data

Dev TypePHY Address

045915 14

4 015

15 0

PHY Reg Address [4:0]

PHY Register Read/Write Data

PHY Reg Address [15:5]

1'b1 – No Preamble, 1’b0 – Preamble

1'b1 – Clause 22, 1’b0 – Preamble

ReservedCFG_REG0 at Address 2’b00

ADR_REG1 at Address 2’b01

RAW_REG2 at Address 2’b10

5

MDIO Master and Slave Controllers

Table 2. MDIO Master Registers for Wishbone Access.

MDIO core is used as Clause 22 master
When there is read access to “RAW_REG2” there will be an MDIO frame sent out on serial line with “op code” set
to “10”(read) and all other fields set in accordingly taken from the fields in “CFG_REG0” and “ADR_REG1”. At the
end of wishbone read cycle the 16 bit data is provided back on wishbone interface which was received from remote
MDIO slave through MDIO frame. Similarly, when there is write access to “RAW_REG2” there will be MDIO frame
sent out on serial line with “op code” set to “01”(write) and the 16 bit data provided in this wishbone write cycle is
used as the data in the generated MDIO frame.

MDIO core is used as Clause 45 master
It also uses the “tga_i” input of the core along with the “adr_i” input from the wishbone interface. Following four
types of MDIO frames are generated.

• read access to “RAW_REG2” with “tga_i” as 1’b0: MDIO frame with “op code” set to “10”(read+address incre-
ment) is generated and at the end of wishbone read cycle the 16 bit data is provided back on wishbone interface
which was received from remote MDIO slave through MDIO frame.

• write access to “RAW_REG2” with “tga_i” as 1’b0: MDIO frame with “op code” set to “01”(write) is generated and
the 16 bit data provided in this wishbone write cycle is used as the data in the generated MDIO frame.

• read access to “RAW_REG2” with “tga_i” as 1’b1: There will be 2 MDIO frames generated. 1). MDIO frame with
“op code” set to “00”(address) with 16 bit address value from “ADR_REG1” is used. 2). MDIO frame with “op
code” set to “11”(read) is generated and at the end of wishbone read cycle the 16 bit data is provided back on
wishbone interface which was received from remote MDIO slave through MDIO frame.

• write access to “RAW_REG2” with “tga_i” as 1’b1: There will be 2 MDIO frames generated. 1). MDIO frame with
“op code” set to “00”(address) with 16 bit address value from “ADR_REG1” is used. 2). MDIO frame with “op
code” set to “01”(write) is generated and the 16 bit data provided in this wishbone write cycle is used as the data
in the generated MDIO frame.

Register Address
Register

Fields
Field
Name Default Description

CFG_REG0

2’b00 15 cls22 1’b0 Selects between Clause 22 and Clause 45.
1’b0 – Clause 45
1’b1 – Clause 22

14 no_pre 1’b0 Used only for Clause 22. Selects if preamble is required
in generated MDIO frames. Preamble is always gener-
ated for Clause 45 frames.
1’b0 – Preamble is required.
1’b1 – Preamble is not required.

13:10 Reserved 4’b0000

9:5 Phy
address

5’b00000 5 bit PHY Address field, used for both Clause 22 and
45.

4:0 Device
type

5’b00000 5 bit Device Type field, used for both only Clause 45.

ADR_REG1

2’b01 15:5 Phy Reg
address[1
5:5]

11’h000 Higher [15:5] bits of PHY register address field, used for
both only Clause 45.

4:0 Phy Reg
address[4:
0]

5’b00000 Lower [4:0] bits of PHY register address field, used for
both Clause 22 and 45.

RAW_REG2

2’b10 15:0 Phy Reg
read write
data

- Read or write data register. An access to this register
generates corresponding MDIO frames.

6

MDIO Master and Slave Controllers

The following steps are involved in making different types of access from an MDIO master.

Clause 22 Read and Write

• Write to CFG_REG0, with bit “cls22” set to 1’b1 and required “Phy address” field.

• Write to ADR_REG1[4:0], with required register address.

• Read from RAW_REG2 to read from an MDIO slave PHY register corresponding to address in register
ADR_REG1.

• Write to RAW_REG2 to write to an MDIO slave PHY register corresponding to address in register ADR_REG1

Clause 45 Read and Write

• Write to CFG_REG0, with bit “cls22” set to 1’b0 and required “Phy address”, “Device type” fields.

• Write to ADR_REG1[15:0], with required register address.

• Read from RAW_REG2 to read from an MDIO slave PHY register corresponding to address in register
ADR_REG1.

• Write to RAW_REG2 to write to an MDIO slave PHY register corresponding to address in register ADR_REG1

• Use “tga_i” input accordingly to generate MDIO address frames depending upon the register address used in the
previous command frame like “read+address increment”.

Following Figure 6 shows the timing diagram of the wishbone write cycle access to register CFG_REG0 at address
2’b00 followed by another wishbone write cycle access to register ADR_REG1 at address 2’b01

Figure 6. Wishbone Write Access to Register CFG_REG0 and ADR_REG1

Following Figure 7 shows the timing diagram of the wishbone write cycle access to register RAW_REG2 at address
2’b10 followed which generates an MDIO frame on MDIO/MDC lines.

7

MDIO Master and Slave Controllers

Figure 7. Wishbone Write Access to Register RAW_REG2 to Generate MDIO Frame

MDIO Slave
MDIO slave core is provided as a Verilog source code in “source/mdio_slave22.v” for Clause 22 and
“mdio_slave45.v” for Clause 45. Figure 8 shows a functional block diagram of the MDIO slave 22/45 master core.
The user interface is provided as a simple Wishbone interface. Table 3 provides the details of these I/Os.

Figure 8. MDIO Slave Functional Diagram

Input shift register

Control logic

Output shift
register

Wishbone
Interface

MDIO

MDC rst_n

adr_o[4:0]/[15:0]
dat_o[15:0]
stb_o
we_o
rdat_i

phy_addr[4:0]

dev_type[4:0]

8

MDIO Master and Slave Controllers

Table 3. MDIO Slave Signal description

The slave core is implemented in two separate control logic modules. The module “mdio_slave22” is for Clause 22
and “module_slave45” is for Clause 45 implementations. These modules implement only control state machine and
required input and output shift register logic to interface with 2-line MDIO interface and provides a simple Wishbone
interface for the register implementation. The slave cores don’t implement actual registers as mentioned in 803.2
Clause 22 and clause 45 specifications. It is required for the user to implement those registers corresponding to the
user’s type of the PHY layer application device. Along with mdio_slave22/45” modules “mdio_slave_ref22/45” are
provided as example usage of these slave modules along with some read-only, read-write registers.

Following Figure 9 shows the timing diagram of the wishbone write cycle access to user register generated after
receiving an MDIO write frame from MDIO/MDC lines.

Figure 9. MDIO Slave Write Cycle to Register

Following Figure 10 shows the timing diagram of the wishbone read cycle access to user register generated after
receiving an MDIO write frame from MDIO/MDC lines.

Signal Type Description

phy_addr[4:0] input PHY address to be claimed by this slave. Used for both
“mfio_slave22” and “mdio_slave45”.

dev_type[4:0] input Device type to be claimed by this slave. Used for only in
“mdio_slave45”.

no_pre input Only in “mdio_slave22”. Selects if preamble is present in receiving
MDIO frames.

1’b0 – Preamble is required.

1’b1 – Preamble is not required.

Wishbone Interface

rst_n Input Asynchronous reset

adr_o[4:0]/[15:0] Output Address bus to Registers. The bus is [4:0] in “mdio_slave22 and
[15:0] in “mdio_slave45.

dat_o[15:0] Output Data to write into the registers.

we_o Output Write enable output

stb_o Output Strobe signal/registers select output

rdat_i[15:0] Input Data from the registers, sampled on next positive MDC clock edge
after “stb_o” is asserted.

MDIO Interface

MDC Input MDIO interface clock

MDIO Bidi Bidirectional MDIO interface data

9

MDIO Master and Slave Controllers

Figure 10. MDIO Slave Read Cycle to Registers

Test Bench and Simulation
Along with mdio_master and mdio_slave cores, an example test bench and required scripts are provided to run
evaluation functional simulations. Figure 11 shows a block diagram of this test bench.

Figure 11. Test Bench

The test bench uses the following files:

• testbench/test_mdio.v – Top-level test bench file that instantiates a “mdio_master”, “mdio_slave_ref22” and
“mdio_slave_ref45”. It also contains the logic implemented for Wishbone driver tasks and few example wishbone
access to the mdio master to access remote mdio slave registers.

• simulation/runsim_mdio_aldec.do – script file to run this functional simulation using Aldec simulator.

• simulation/runsim_mdio_modelsim.do – script file to run this functional simulation using ModelSim simulator.

mdio_master
mdio _

slave 22

mdio _
slave 45

mdio_slave _ref 22

mdio_slave_ref45

registers

registers

Wishbone driver
tasks

Register read
write tasks

MDC

MDIO

test_mdio

10

MDIO Master and Slave Controllers

Implementation
This design is implemented in Verilog. When using this design in a different device, density, speed, or grade, perfor-
mance and utilization may vary. Default settings are used during in diamond software for the implementation of the
design. The “impl” directory provides example .ldf and .lpf files for each of “mdio_master”, “mdio_slave_ref22” and
“mdio_slave_ref45” cores which can be used for implementation using Lattice Diamond software.

Table 4. Performance and Resource Utilization for mdio_master

Table 5. Performance and Resource Utilization for mdio_slave22

Table 6. Performance and Resource Utilization for mdio_slave45

References
IEEE 802.3 Standard specification.

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Family Speed Grade LUTs Registers Frequency (MHz)

ECP3 -6 137 106 >130

XO2 -4 135 103 >100

Family Speed grade LUTs Registers Frequency (MHz)

ECP3 -6 96 / 1981 76 / 2971 >130

XO2 -4 68 /1691 67 / 1801 >65

1. Uses an implementation of example registers.

Family Speed grade LUTs Registers Frequency (MHz)

ECP3 -6 124 / 3721 93 / 3301 >80

XO2 -4 124 / 2991 83 / 3071 >50

1. Uses an implementation of example registers.

Date Version Change Summary

November 2013 01.0 Initial release.

http://www.latticesemi.com
mailto: techsupport@latticesemi.com

	MDIO Master and Slave Controllers
	Introduction
	Features
	MDIO Master
	MDIO Slave

	Functional Description
	MDIO Master
	MDIO Slave
	Test Bench and Simulation
	Implementation
	References
	Technical Support Assistance
	Revision History

